NEW BAND TOEPLITZ PRECONDITIONERS FOR
ILL-CONDITIONED SYMMETRIC POSITIVE DEFINITE TOEPLITZ
SYSTEMS
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Abstract. It is well known that Preconditioned Conjugate Gradient (PCG) methods are widely
used to solve ill-conditioned Toeplitz linear systems T (f)z = b. In this paper we present a new
preconditioning technique for the solution of symmetric Toeplitz systems generated by nonnegative
functions f with zeros of even order. More specifically; f is divided by the appropriate trigonometric
polynomial g of the smallest degree, with zeros the zeros of f, to eliminate its zeros. Using rational

. . . . 2 . . .
approximation we approximate \/g by i;i and consider P?E as a very satisfactory approximation of f.

We propose the matrix Mn = B *(p)B.(p%g) By (p) as a preconditioner whence a good clustering
of the spectrum of its preconditioned matrix is obtained. We also show that the proposed technique
can be very flexible, a fact that is confirmed by various numerical experiments so that in many cases
1t constitutes a much more efficient strategy than the existing ones.
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1. Introduction. In this paper we use and analyze band Toeplitz matrices as
preconditioners for the solution of the n x n ill-conditioned symmetric and positive
definite Toeplitz system

(1:1) T.(flz =5

by the Preconditioned Conjugate Gradient (PCG) method, where the matrix T, (f) €
IR™*™ is produced by a real-valued, even, 2m- periodic function defined in the fun-
damental interval [—m,x]. Then, the (j,k) element of T, (f) is given by the Fourier
coefficient of f, i.e

1

Lulflip=Tjk = = fz)e i 0=R=dr 1< k<n,

=T

where i is the imaginary unit.

Toeplitz matrices arise very often in a wide variety of applications, as e.g., in
the numerical solution of differential equations using finite differences, in statistical
problems (linear prediction), in Wiener-Hopf kernels, in Markov chains, in image and
signal processing, e.t.c. (see [8], [3], [19]). The generating function f plays a significant
role in the location and distribution of the eigenvalues of Toeplitz matrix [8], [4] and
in many cases is a priori known. As it is known for the spectrum of T}, (f) there holds
o(Tn(f)) C [essinf f, esssup f).

Superfast direct methods can solve system (1.1) in O(nlog?n) operations, but
their stability properties for ill-conditioned Toeplitz matrices are still unclear; see, for
instance, [3].
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The classical iterative methods such as Jacobi, Gauss—Seidel and SOR are not
effective since the associated spectral radius tends to 1 for large n. The method
which is widely used for the solution of such systems is the PCG method. The factors
that affect the convergence features of this method are the magnitude of the condition
number £2(T,(f)) and the distribution of the eigenvalues. So a good preconditioner
must cluster the eigenvalues of the preconditioned system as much as possible and
make the eigenvalues that might lie outside the cluster have magnitude independent
of n.

If the generating function is continuous and positive then problem (1.1) will not
be ill-conditioned and the condition number can not increase proportionally to n
although it can be very large. In this case system (1.1) can be handled by using a
preconditioner belonging to some Trigonometric matrix algebras (circulant ,7, Hartley,
18], [17], [9]) or by band Toeplitz preconditioners with weakly increasing bandwidth
defined by a polynomial operator S, as was proposed in [16]. Theoretically, the latter
class of preconditioners seems to perform better as n — oo since the number of PCG
iterations tends to 1 while in the former cases this number tends to a constant.

When f has any zeros, then system (1.1) is ill-conditioned and the condition
number k2(7(f)) increases proportionally to n® where « is the largest number of
the multiplicities of the zeros of f [4], [14]. To best handle this case it is necessary
to know the number of the zeros of f. If this number is not even then the most
suitable technique for this situation [13], fails to make the condition number of the
preconditioned matrix independent of its dimension n and the problem is still open.
On the other hand things dramatically change when the number of zeros is even.

In this case, it was R. Chan [4] who first proposed as a preconditioner for system
(1.1) the Toeplitz band matrix By (g) whose generating function g is a trigonometric
polynomial that has the same zeros with the same multiplicities as those of f- Next,
in [5], g was not only considered as having the zeros of f but also its degree was
increased so that it provided additional degrees of freedom to approximate f and to
minimize the relative error ||*L;-‘1||c,o over all trigonometric polynomials g of a fixed
degree [. The generating function g is then computed by the Remez algorithm, which
can be very expensive, from the computational point of view, especially when f has
a large number of zeros.

Recently, Serra [15] has extended this method by proposing alternative tech-
niques to minimize ]|=%-‘2 |co. More specifically, he chose as g, zpg;—; where z;, is the
trigonometric polynomial of minimum degree k that has all the zeros of f with their
multiplicities and g;_ is the trigonometric polynomial of degree | — k which is the
best Chebyshev approximation of f = -z-f; from the space P;_j of all trigonometric
polynomials of degree at most [ — k. In addition, in the same work [15], it was also
proposed another way of constructing g;—; by interpolating f at the [ — k + 1 zeros
of the (I — k + 1)-st degree Chebyshev polynomial of the first kind.

We remark that it has been proved [7], that preconditioners belonging to the
aforementioned matrix algebra, when they can be defined, produce weak clustering,
Le., the eigenvalues of the preconditioned matrix are such that for every e > 0 there
exists a positive 8 so that, except for rare exceptions, O(n®) of the eigenvalues lie in
the interval (0, €).

In this paper we extend the previous methods in order to achieve a better cluster-
ing for the eigenvalues of the preconditioned matrix and propose a way of constructing
a class of preconditioners based on rational approximation or on interpolation to the

positive and continuous function 4/ -z{: with 2z defined previously.
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The outline of the present work is as follows. In Section 2 we recall some useful
issues about the rational approximation, while in Section 3 we introduce the technique
of constructing the new class of preconditioners based on rational approximation to
1/{; and analyze the convergence of the PCG method. In Section 4 we study the
flexibility and possible modifications of our method, analyze its cost per iteration
and compare it with that of previous techniques. Finally, in Section 5, results of
illustrative numerical experiments are exhibited and concluding remarks are made.

2. Preliminaries. In what follows we assume that the generating function f
is defined in [—m, 7], is 2m- periodic, continuous, nonnegative and has zeros of even
order.

We define by z the trigonometric polynomial of minimum degree k containing all
the zeros of f with their multiplicities. Then we define ry, = ﬁ— as the best rational

approximation of f = 1/{; in the uniform norm, i.e.,

If = Timlleo = 22 If = 7lloos
where R(l,m) denotes the set of rational functions r, with p € P}, ¢ € P, and 7 is
irreducible, that is p and ¢ have no zeros in common.

It is known that when f belongs to some special class of functions [10] then the
order of magnitude of the maximum error of an approximation from the space R(l,m)
is better than the corresponding error in the space P(I + m). In general, we hope
that taking advantage of the flexible nature of rational functions this set will be a
stronger tool than its competitor the polynomial one. For example, it is obvious that
polynomials are not suitable for approximating functions having sharp peaks near the
center of their ranges and are slowly varying when |z| increases. Such kind of behavior
can be obtained by continuous functions which are not differentiable at some points.
However, it is easy to overcome this difficulty by using rational functions.

The next theorem establishes the fact that rational approximation of continuous
functions in [—, 7] is always possible and unique.

THEOREM 2.1. Let f in C[—m,n]. Then there exists r* € R(l,m) such that

IF =%l < [lF ~=

forallr e R(I,m) , r # r*.

Proof. See [12], pp. 121,125. O

3. Construction of the Preconditioner. Let f be a 2r—periodic, nonnegative
function belonging to C[—m, 7] with zeros z1, 2, - - -, zs of multiplicities 201,209, -,
2us, Tespectively, and 2u7 + 2us + - - - + 21, = p. First, we define

Zp= H(l — cos(z — ;) )™
i=1

which is the trigonometric polynomial of minimum degree p having all the zeros of
f. By dividing f by z,, all its zeros are eliminated and the ratio {: becomes a real
positive function.

Then, we define the function f = ,/;_,f; and approximate it with the rational

trigonometric function r; ., = a‘l where [, m are the degrees of the numerator and the



4

denominator, respectively. Since % is the best rational approximation of ;f— for
m P

2
certain [ and m we are led to the conclusion that q%%- may be a good approximation
of -zf: This means that there exists a small ¢ > 0 such that

f_

<€
zZ, g3

oo

or, equivalently, that there exists a small § > 0 such that

2

2
qu—lH <.
ZpP]

=]

2
The last inequality means that the values of z—'il;y f are clustered in a small region
1

2
near the constant number 1. In matrix analog, this means that taking T, (Z—‘;’g’é) as

a preconditioner matrix for the solution of (1.1), the eigenvalues of 7, * (iq"{;'i) Teif)

are clustered in a small region near 1 and the PCG method will become very fast.
Unfortunately, this matrix is a full Toeplitz matrix, is hard to construct, is costly
to invert and so it is useless as a preconditioner. Instead, we are 2led to the idea
of separating the numerator and the denominator of the ratio %‘3‘— and use as a

preconditioner matrix the product of three band Toeplitz matrices. More specifically,
the preconditioner we propose for the solution of system (1.1) is

(3.1) M, = B;;}.(9)B,;(p*z,) B}, (a), [=2l+p,

where the second index in the matrices represents their halfbandwidth, while the
first one their dimension. The following statements prove the basic assumptions a
preconditioner must satisfy and also describe the spectrum of the preconditioned
matrix M 17T,.

THEOREM 3.1. The matriz M, tis symmetric and positive definite for every n.

Proof. Its symmetry is implied directly from the definition (3.1). On the other
hand, the eigenvalues of B, ;(p®z,) belong to the interval (min p?z,, max pfz,), where
0 = minp?z, < maxp?z, < 2°. Therefore, B,(p?z,) is symmetric and positive def-
inite. Furthermore, ¢,, has no zeros in [—m,#] because it results from the rational
approximation to a function which is strictly positive in [-m,7]. So, Bpm(g) is sym-
metric and invertible. Then, for every z € IR™, = # 0, we have

z¥ Moz = =¥ B}, (9)B,1(p°z,) By (9)x = y7 B (%2, )y > 0,

where y = B} (g)z. Hence M, is symmetric and positive definite. O

Theorem 3.1 suggests that the matrix M, can be taken as a preconditioner matrix.
It then remains to study the convergence rate of the PCG method or, equivalently,
how the eigenvalues of the matrix M7 1T, are distributed. For this, we give without
proof the following Lemma and then we state and prove our main result in Theorem
3:8.

LEMMA 3.1. Suppose A, B € R™*™ agre symmetric matrices such that

A=B+ect,



where c € R™, cTc=1. Ife > 0 then

A1(B) £ A1(A4) € A2(B) <+ < Ma(B) £ Mn(4)
while if € <0, then

A1(4) S Ai(B) < A(4) < -+ < An(4) < M(B)

provided that the eigenvalues are labeled in nondecreasing order of magnitude. In
either case

)\k(A)=/\k(B)+tk€, k=1,2,---,n,
where ty 20, k=1,2,---,n, and > po_,tr = 1.
Proof. See Wilkinson [20], pp. 97-98. O

THEOREM 3.2. Let \{(M;'T,), i = 1(1)n, denote the eigenvalues of M 1T,
and m the degree of the denominator g, of the rational approzimation. Then, at least
n —4m eigenvalues of the preconditioned matriz lie in (Amin, Amax), at most 2m are

greater than hmax and at most 2m are in (0, hmin), where h = ;@% .
Proof. Obviously the matrix

M Tn = Bam(9)B.; (125) Bam (9) T ()
is similar to the matrix
S
2

52) B (672 Bun(@)Tn () Barm (@ B(52)

Then, since Bnm(g) is a band matrix with halfbandwidth m, the matrix

can be written as a sum of a Toeplitz matrix and a low rank correction matrix, i.e.,
(3:3) Bnm(q)Tn(f)Brm(q) = Tn(qu) + A,

where A is a symmetric ‘border’ matrix with nonzero elements only in the first and
last m rows and columns. So rank(A) < 4m is independent of n. Then, from (3.2)
and (3.3) we obtain that

2 E
B (1°2) Bam(0)Tn(f) Brm () B (P%25) = B2 (022,10 (@ F) B (°2,)
(3.4) + B (0*2)AB (p%2).

Since a matrix product does not have rank larger than that of each of the factors
involved, there exist a; > 0, ¢; € R™, i = 1(1)m4, and ; > 0, d; € R™,i = 1(1)m_,
with my +m_ < 4m, such that (3.4) can be written as

m m_
E— E = iaicic? - Zﬁzdzd?
i=1 i=1
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So applying successively m. + m_ times Lemma 3.1 gives
Pmin £ Ai(E) < hmax, m_ <i<n-—my,

and the theorem is proved. 0

It is clear from the previous analysis and statements that contrary to what hap-
pens with other band Toeplitz preconditioners, the one we propose of the ‘premulti-
plier’ matrix Bym(g) , may make some of the eigenvalues lie outside the approximation
interval [Amin, Amax]. We will prove now that the spectral radius of the preconditioned
matrix is bounded by a constant number independent of n. For this, first, we state
and prove the following lemma.

LEmMA 3.2. Let B, be a n x n symmetric and positive definite band Toeplitz
matriz with halfbandwidth s. Then the k X k principal and trailing submatrices of
B! as well as the k x k submatrices consisting from the first k rows and the last
k columns (right upper corner) or from the last k rows and the first k columns (left
lower corner) of B!, are bounded for every fixed k independent of n .

Proof. For principal and trailing submatrices, this property has been proved in
[6] for k = s. We will prove the validity of this property for k = s + 1 and the proof
of every fixed k can be completed by induction. From the foundamental relation

s+1

Zbu(BEl)lj = 815,
=1

where 61, is the Kroneker 4, we obtain successively that

1 . .
(3.5) (BrY)st1,5 = — (815 — Zbll(B«;l)lj s f =ilydy o 58
bl,s+1 iy

Since all the elements in the righthand side of (3.5) are bounded, so are the elements
(BiY)s+1,5, 5 = 1,2,---,5. From the symmetry of B! we obtain that the elements
(BzYis+1, j = 1,2,--+,s, are also bounded. One more application of (3.5) for
j = s+ 1, gives us that the element (B, ?)s+1,5+1 is bounded and the proof for the
principal submatrices is complete. Since, B, ! is a persymmetric matrix the elements
of the trailing matrix are the same as those of the principal one in reverse order. So
the & x k trailing matrix is also bounded.

It remains to prove the validity of the property for the submatrices in the right
upper corner and in the left lower corner of B;!. These matrices are transposes of
each other due to the symmetry of B;!. From the positive definiteness of B! we
have that

(B7 Vi + (B7 Y45 ;
2 2
The elements in the righthand side are the diagonal elements of the k x k principal

and trailing submatrices, respectively, which are bounded and the proof is complete.
a

(B )] <

=1,...,k, j=n—-k+1,...,n

The following theorem proves that the eigenvalues of M =T have an upper bound.

THEOREM 3.3. Under the assumptions of Theorem 3.2 there exists a constant c,
independent of n, such that p (M71Th(f)) < ¢, for every n.

Proof. We begin the proof by using some relations connecting the spectral radii
and the Rayleigh quotients of symmetric matrices. The fact that all the matrices are



positive definite, is also used.

p (M7 To(£)) = p (Bum(@) B (°25) Bam(@) T ()
=p (B;f% (Pzzp)Bnm (@)Tn(f)Bnm (Q)B;‘% (Pzzp))
xTB,;‘% (p2zp)Bnm (Q)Tn(f)Bnm(Q)B;f% (pzzp)a:
= max
2720 Tz
= i z Tal )z ) zTan‘(pzzp)x
0 \ 27 Brm(9)B,i(p?2,) Bam(¢)z 3T B;(0%2,)z
B 2P T (f)x _ zTB_j(p?z,)z
. s (ITan(Pzzp)x 2T Bam(9) B,1(p%2p) Brm (9)2
TLfe | aTB ()
= =20 3T B ;(p?2,)x  =£0 1T BrL(q)B, ;(022,) Buk(q)z
Z'TBnm(Q)an(Pzzp)Bnm(Q)x

=M1II13.X

z#0 5B (e}
zT (Bn’f+2m(q2pzzp) + A) T
= M1 max T )
T#0 25 B_slpte e

T

i Az

< M (Mz -+ max ————)
=0 2T B_;(p?z,)z

= M, (M2 +p (B;;(p?zp)a)) .

z4 B ;(p*zp)x

maxzzo 2 Bk (0 2p)2 = p (B }(p%2,)B,, ;... (a°p*z,) | which are bounded, since
x zT B, ;(p?zp)z i W Zp) By i1 om 87D 2p ’

In (3.6) we have taken M; = max .o —Tm-ﬂér)z— = p (B (p*z,) T, f)) and M, =
# ni P

2,2
the generating functions ;5% and q—pfz—:f- = ¢2, respectively, are bounded functions in

[-m,7]. In (3.6), the matrix product Bnm(q)an(pzzp)Bnm(q) was written as the
band Toeplitz matrix B, ;. , (¢°p®z,), generated by the function ¢p®z,, plus the
low rank correction matrix A.

It is known (2] that the matrix A is given by
A= Bnm(Q)H(Q)H(pQZp)+Bnm(Q)HR(Q)HR(p2zp)+H(Q)H(qp22p)+HR(Q)HR(QP23.0)7

where H(q), H(p?z,) and H(gp®z,) are Hankel matrices produced by the trisonomet-
ric polynomials g, pzzp and gp®z,, respectively, while H denotes the matrix obtained
from H by reversing the order of its rows and columns.

It is obvious that A is a low rank correction matrix that has nonzero elements
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only in the upper left and lower right triangles as this is illustrated below

- ok g o O
0 0
A= * 0 0 0
0 0 0 =
A (] . i
0 e @) ¥ oo K

It is clear that the elements of A are bounded and the size of the triangles depends
only on the bandwidths m and [ and are independent of n.

It remains to prove that p (B;'fl (p2zp)A) is bounded. For this, we write the
matrices in the following block forms

Bl * Bz D
Br:fl (p2zp) = AR . ) A= 0 '
BT x BR o

where By, By are k x k matrices if D has k nonzero anti-diagonals.
Since the only nonzero columns of the matrix B;'El (p?z,)A are its first k and last

k ones, the nonidentically zero eigenvalues of B;fl (p?z,)A will be the eigenvalues of
the matrix

BiD B,DE
BID BEDE

In view of Lemma 3.2 this matrix is bounded and so are its eigenvalues which proves
the present statement. 0

So, the eigenvalues that are greater than Amax, have an upper bound. An open
question remains regarding the eigenvalues that may lie in the interval (0, Api,). How-
ever, strong numerical evidence suggests that in the spectrum of the preconditioned
matrix obtained by our approach (see Figures 5.1, 5.2, 5.3 ), these eigenvalues have
a lower bound independent of n. Moreover, as one can see from Figures (5.1(b)-(d),
5.2(b), 5.3(b)), the out of the main interval eigenvalues appear in pairs. In addition,
the elements of each pair tend to each other as n tends to infinity. In view of this
observation the convergence analysis of the PCG method in [1] assures us that our
method will not be seriously affected and the convergence of it will remain superlinear
which is the optimal cost for this method.

4. Computational analysis and modifications of the method. In this sec-
tion we will try to compare, from the computational point of view, our preconditioner
with the most recent band-Toeplitz preconditioner proposed in [15]. The latter has in
general the best performance from all the previous ones, when the generating function
f is nonnegative and has zeros of even order.

The main computational cost in every PCG iteration is due to the Toeplitz matrix-
vector product T,,(f)z and to the solution of a system with coefficient matrix the
preconditioner itself. The first one is the same for both methods and can be com-
puted by means of Fast Fourier Transform (FFT) in 30(n log2n) operations (ops) in



9

a sequential machine or in O(log2n) steps in the parallel PRAM model of computa-
tion, when O(n) processors are used. For the inversion of the preconditioners things
slightly change. If we use band Toeplitz preconditioners then their halfbandwidth
l1 represents the degree I; of the Chebyshev approximation plus the degree p of the
trigonometric polynomial which eliminates the zeros of f. The inversion of such type
of matrices can be achieved using the LDLT factorization method in n(i2 + 8i; + 1)
ops. We mention that this method is preferable from the band Cholesky procedure
because the latter requires the computation of n square roots, which is quite expensive
when n is large.

In the case of our preconditioner the inversion requires two band matrix vector
products of total cost n(4m + 2) ops, where m is the halfbandwidth and coincides
with the degree of the denominator in the rational approximation. In addition, the
inversion of B, ; , as in the previous case, can be performed in n(i3 + 8z + 1) ops,

where fz = p + 2l and [ represents the degree of the numerator of the rational
approximation. So the total cost per iteration for this step of the algorithm of the
PCG method is about

Costy; = n(f% + 8fg +4m + 3).

When n is large, the complexity of the method is strongly dominated by the first

step which requires O(nlog2n) ops and the methods are essentially equivalent in

complexity per iteration. Thus the costs of finding B;i and Bn,mB; }2 B, m, where
1tl »

l; = l3 + m, are comparable.

In case n is not large enough, taking Iy = % — 1 and making some calculations,
we can see that the two preconditioning strategies are approximately equivalent even
when m = pl;.

According to this observation, if we have two candidates of rational approxima-
tions of f with almost the same relative error and degrees (l3,m;), (l2,m2) with
l1 +my = lz + mg, it is preferable, from the computation point of view, to choose
as the generating function for our preconditioner the one which has the larger m and
smaller [.

Finally, we will focus on the calculation of rational approximation of degree (I, m)
of a positive continuous function f. In the recent literature many different strategies
that produce this kind of approximation [11] can be found. Each of them is most
suitable for certain classes of functions but the one which is based on the Remez
algorithm seems to be, in general, quite efficient for a large variety of functions. The
starting point of this category of algorithms is to construct a rational approximation
using rational interpolation and then this rational approximation is used to generate
a better approximation until an alternative set of m + [ + 2 points is achieved. This
procedure consists of adjusting the choice of the interpolation points in such a way as
to ensure that the relative error decreases. In practice this method can fail in some
cases. Usually, problems are caused either from the fact that the extreme values of the
relative error occur more than m + [ + 2 times, or the starting rational interpolation
has zeros in the interval in which this approximation is sought. The first difficulty
is usually overcome by seeking a rational approximation of a different degree or by
designing a more robust algorithm. A trick that often works in the latter case is,
instead of asking again for a rational approximation of a different degree, to start
with an approximation that is valid over a shorter interval and use it as a starting
point for an approximation on a slightly larger interval. Iterative application of this
procedure may enable us to obtain a final approximation in the desired interval.
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TABLE 5.1
Number of iterations for fi(x)

In [Bx Bl[BZ B3] B;* B:[M®' ROT [ Mi! RLI | M1? RL?
169 8 [9 7 [7 6 [& 7 |6 6 |5 5
32 |10 10 |11 8 |9 7 |10 9 |7 7 |6 6
64 |13 12 |11 10 |9 8 [11 11 |9 9 |8 8
12815 15 |12 11 |10 10 |12 13 |11 11 |10 10
256 (16 16 |12 13 |10 10 |13 13 |12 12 |11 11

512 | 16 16 13 13 10 11 13 14 13 13 11 12

For the convergence rate of the approximation method we can not give a the-
oretical result, but the facts that its computational cost is independent of n and
the computations are done only once for a given function make us believe that this
problem does not play an important role in the whole procedure.

4.1. Modifications of the method. The idea of constructing a preconditioner
from a rational approximation of a function can be used in exactly the same way in case
of rational interpolation at the Chebyshev points. The advantage of this modification
is the easiness of its calculation. Nevertheless, it is worth noticing that we can not
assure that this interpolation would not have zeros in the interval of approximation.
Despite this, whenever the preconditioning gives us poor results, this technique may
give, at least for certain classes of f, results similar to the corresponding ones by the
best Chebyshev approximation.

Another modification of this kind of preconditioning would be the following. First,
we approximate the function -L by a rational approximation 2—, where k can be
very large. Then we approxlma.te the function /7 using a polynomlal Chebyshev
approximation g,. Finally, the ratio E;%,: is considered as an approximation of ;% So,

the preconditioner matrix M for the solution of (1.1) would be

(4.1) M, = B;1(d)B, i(pz)B;A(0), [=1+p,

instead of M, in (3.1). After this, all the previous theory developed holds the same.
The main point of this method is to approximate directly }f instead of , /{: and

possibly with a polynomial of higher degree in the denominator. Then considering
that this can take care of every possible abnormalities of f, we approximate the
denominator by a polynomial of lower degree by the Chebyshev technique. We remark
here, that numerical experiments show that this matrix is not in general so good as a
preconditioner compared with M, or with the band-Toeplitz preconditioner obtained
in [15]. This is because we make approximations in two levels. First, we take the
rational approximation and then the Chebyshev approximation of the square root of
the denominator of the first approximation. So, the overall approximation error seems
to become much larger.

5. Numerical examples and concluding remarks. In this section, we present
some numerical examples. The aim of these examples is twofold: i) to show, by numer-
ical evidence, the correctness of our observations regarding the asymptotical spectral
analysis of the preconditioned matrices and ii) to compare the convergence rate of our
preconditioner with that of the band Toeplitz preconditioner proposed in [15]. We
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TABLE 5.2
Number of iterations for fz(x)

o [BF[BF[Br [Br [Ma' [RR7]
16 |8 [8 |7 |8 [&8 |6
32 |13 [13 |12 |11 |11 |7
64 |19 |18 |15 |13 |12 |9
12824 |19 |17 |14 [12 |11
256 |25 |21 |18 |15 |13 |13
512 (27 |22 |18 |16 |14 |14

use the latter to compare it with ours because it is the most efficient technique for
preconditioning Toeplitz matrices generating by functions with zeros of even order.
Our test functions are the following

2z

L _ .4 _
1) file) ==, 1+ 25z2

i) fa(z) =

22
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32 * *

64 * *
BIT | Ak kb 128 ® 2
256 * x
512 ke

512 >
256 ke
128 * %

64 * *

32 * *

(2) (b) The two pairs of extreme eigen-
values

FiG. 5.2. Spectra of (Mpy?) " Tu(f2) and (B2)"'Tn(f2) for n = 128 and behavior of the
pairs of eigenvalues that lie outside the interval [Amin, Amaz)

32 * *

64 * *
Bl WGk k Kk Wk kK * x 128 o«
256 * %
512 b

M-IT * & 20 30

32 * *
64 L
128 L
256
512 -

0.0002 0.0004

0 100 200 300 400 500 0

(a) (b) The two pairs of extreme eigen-
values

Fic. 5.3. Spectra of (Ma2) " Tn(f3) and (B:2) " 'Tn(fs) for n = 256 and behavior of the
pairs of eigenvalues that lie outside the interval [Rmin, hmaz

and

_f (z-3)*z - 1)? 0<z<m,
i) fs(z) = { (x+3)4(zx +1)2 —-rm<z<0.

An effort was made to choose functions of different behaviors which produce ill-
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TABLE 5.3
Number of iterations for fa(z).

In [B2 BB [M2]RT?]
6 (9 [7 [7 |9 |[8
32 |17 |14 |13 |18 |11
64 |34 |28 |22 |21 |14
128 | 65 |48 (36 |21 |20
256 | 111 | 69 |54 |23 |24
512 | 152 |93 |66 |23 |27

conditioned matrices T;,. The Toeplitz matrices produced have Euclidean condition
numbers of order O(n*). In our experiments we solve the system T},(f)z = b where
b is the vector having all its components equal to one. As a starting initial guess of
solution the zero vector is used and as a stopping criterion the validity of % =$ilia]
is considered, where 7y is the residual vector after k iterations. The matrices and the
rational approximations were performed using Mathematica in order to have more
accurate results while all the other computations were performed using Matlab.

In the Tables we report the number of iterations needed until convergence is
achieved in each case, B} denotes the optimal band Toeplitz preconditioner [15] which
is generated by the trigonometric polynomial z,g;, with g; being the best Chebyshev

approximation of {— out of 7, .BA,:EL is the band Toeplitz preconditioner where g is the
il

interpolation polynomial at the Chebyshev points, M%™ denotes our main proposed
preconditioner obtained by the best rational approximation procedure of degree (I, m)
and R4™ denotes the preconditioner that results after applying rational interpolation
of degree ([, m).

In Figures 5.1(a), 5.2(a), 5.3(a), the spectra of the matrices M7 T (f;), i = 1,2, 3,
are illustrated, while in 5.1(b)-(d), 5.2(b), 5.3(b) we focus on the behavior of the pairs
of eigenvalues of the matrix lying outside the interval [Amin, Amax] for different values
of n. The boundness and the convergence in pairs is obvious in all figures. Especially,
we stress the case of figures (5.1) and (5.3) where as we expected from the theory at
most eight eigenvalues would lie outside the interval [Amin, Amax] but in practice, for
the first test function, only three pairs of eigenvalues lie outside this interval, one of
which (the second lower pair) moves very close to the lower bound Ami, = 0.98214
while, for the third test function, only two pairs lie outside this interval. Finally, we
remark that in the case of f3 and for n = 512, the preconditioning by band Toeplitz
B*? “clusters” the eigenvalues of the preconditioned matrix in [0.5,584.3] , B*S in
[0.36, 104.7] while M2 collects the main mass of them in [0.67,1.65] and R12 collects
it in [0.95,14.25].
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